The MVME2300 series of VME boards provides the performance of Motorola’s PowerPlus Architecture, and the ability to fully customize your application with two PCI Mezzanine Cards (PMCs).

Utilizing Motorola’s PowerPC 603 or PowerPC 604 32-bit microprocessors, the Peripheral Component Interconnect (PCI) bus for the on-board peripherals, processor-memory bus to PCI bus bridge, and a VME interface, the MVME2300 processor modules pack optimum levels of flexibility and performance into a single VME slot.
MVM2300 Details

IEEE P1386.1 Compliant PMC Slots
The MVME2300 features dual PMC ports with support for both front-panel and P2 I/O. P2 I/O-based PMCs which follow the PMC committee recommendation for PCI I/O when using the VME64 extension connector will be pin-out compatible with the MVME2300.

In addition to providing high-performance expansion I/O, the IEEE P1386.1 compliant PMC ports form a common architecture for future generations of products. Changing I/O requirements can be satisfied by simply replacing PMCs while reusing the same base platform, reducing the long-term cost of ownership.

VME64 Extension Connector
To maximize the capabilities of the MVME2300, 5-row 160-pin DIN connectors replace the 3-row, 96-pin connectors historically used on VME for P1 and P2. Two rows, Z and D, have been added to the VME P1/J1 and P2/J2 connectors providing a user with additional I/O. The VME64 extension connector is 100% backward compatible with existing VME card systems.

PowerPlus Architecture
The PowerPlus Architecture is a processor and bus architecture fully optimized to get the maximum performance from the PowerPC microprocessor family, the PCI bus, and the VME-bus. The outstanding performance of VME processor boards based on the PowerPlus Architecture is not due to a single factor. A number of elements in the design of the PowerPlus Architecture contribute to its outstanding performance including the processor-memory subsystem, high-speed local bus, optimally decoupled architecture, decoupling the processor from PCI, and the advanced VME interface which reduces PCI delays. Contact your sales representative for details.
Specifications

Processor
- **Microprocessor:** MPC603, MPC604
- **Clock Frequency:** 200 MHz, 333 MHz
- **On-chip Cache (I/D):** 16KB/16KB, 32KB/32KB

Memory
- **ECC Protected Main Memory:** Dynamic RAM with 66 MHz bus
- **Capacity (60ns EDO):** 16 or 32MB
- **Capacity (50ns EDO):** 64 or 128MB
- **Single Cycle Accesses:**
 - Read Burst Mode (60ns): 9-1-2-1 idle; 3-1-2-1 aligned page hit
 - Read Burst Mode (50ns): 8-1-1-1 idle; 2-1-1-1 aligned page hit
 - Write Burst Mode: 4-1-1-1 idle; 3-1-1-1 aligned page hit
- **Architecture:** 128-bit, 2 way interleaved
- **EEPROM/Flash:** On-board programmable
- **Capacity:** 1MB via two 32-pin PLCC/CLCC sockets; 4MB surface mount
- **Read Access (4MB port):** 68 clocks (32-byte burst)
- **Read Access (1MB port):** 260 clocks (32-byte burst)
- **NVRAM:** 8KB; 4KB available for users
- **Cell Storage Life:** 50 years at 55°C
- **Cell Capacity Life:** 10 years at 100% duty cycle
- **Removable Battery:** Yes
- **VMEbus ANSI/VITA 1-1994 VME64 (IEEE STD 1014):**
 - **DTB Master:** A16–A32; D08–D64, BLT
 - **DTB Slave:** A24–A32; D08–D64, BLT, UAT
 - **Arbiter:** RR/PRI
 - **Interrupt Handler/Generator:** IRQ 1–7/Any one of seven IRQs
 - **System Controller:** Yes, jumperable or auto detect
 - **Location Monitor:** Two, LMA32

Ethernet Interface
- **Controller:** DEC 21140
- **PCI Local bus DMA:** Yes
- **Connector:** Routed to front panel via an RJ-45

Asynchronous Serial Port
- **Controller:** PC16550
- **Connector:** Routed to the front panel via an RJ-45

Counters/Timers
- **TOD Clock Device:** MK48T59; 8KB NVRAM
- **Real-Time Timers/Counters:** Four, 16-bit programmable
- **Watchdog Timer:** Time-out generates reset

Miscellaneous
- Reset and Abort switches and four LEDs for Fail, CPU, PMC1, PMC2 on front panel

IEEE P1386.1 PCI Mezzanine Card Slot
- **Address/Data:** A32/D32/D64, PMC PN1, PN2, PN3, PN4 connectors
- **PCI Bus Clock:** 33 MHz
- **Signaling:** 5V
- **Power:** +3.3V, +5V, ±12V, 7.5 watts maximum per PMC slot
- **Module Types:** One double-wide or two single-wide front panel I/O or P2 I/O

Note: P2 I/O from PMC slot 2 is only accessible to systems equipped for VME64 extension connectors

PCI Expansion Connector
- **Address/Data:** A32/D32/D64
- **PCI Bus Clock:** 33 MHz
- **Signaling:** 5V
- **Connector:** 114-pin connector located on the planar of the MVME2300

Power Requirements
- **+ 5V ± 5%**
 - MVME2300 w/ MPC603 @ 200 MHz: 4.0 A typical, 4.75 A max.
 - MVME2300 w/ MPC604 @ 333 MHz: 5.0 A typical, 5.5 A max.

Note: Power requirements are PMC dependent at +12 and −12 volts.

Board Size
- **Height:** 233.4 mm (9.2 in.)
- **Depth:** 160.0 mm (6.3 in.)
- **Front Panel Height:** 261.8 mm (10.3 in.)
- **Width:** 19.8 mm (0.8 in.)
- **Max. Component Height:** 14.8 mm (0.58 in.)

Demonstrated MTBF
(based on a sample of eight boards in accelerated stress environment)
- **Mean:** 190,509 hours
- **95% Confidence:** 107,681 hours

Environmental
- **Operating Temperature:** 0°C to +55°C
- **Nonoperating Temperature:** −40°C to +70°C
- **Humidity (NC):** 5% to 85%
- **Humidity (NC):** 5% to 95%
- **Vibration:**
 - 1 G Sine Sweep 5–100 Hz
 - 3 G Sine Sweep 50–500 Hz
 - 3 G Sine Sweep 50–500 Hz

Electromagnetic Compatibility (EMC)
- **Intended for use in systems meeting the following regulations:**
 - U.S.: FCC Part 15, Subpart B, Class A (non-residential)
 - Canada: ICES-003, Class A (non-residential)
- **This product was tested in a representative system to the following standards:**
 - CE Mark per European EMC Directive 89/336/EEC with Amendments; Emissions: EN55022 Class B; Immunity: EN50082-1
Safety

All printed wiring boards (PWBs) are manufactured with a flammability rating of 94V-0 by UL recognized manufacturers.

Software Support

The MVME2300 is supported by a complete range of real-time operating systems and kernels.

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVME2301</td>
<td>200 MHz MPC603, 16MB ECC DRAM, IEEE handle</td>
</tr>
<tr>
<td>MVME2301-900</td>
<td>200 MHz MPC603, 16MB ECC DRAM, Scanbe handle</td>
</tr>
<tr>
<td>MVME2302</td>
<td>200 MHz MPC603, 32MB ECC DRAM, IEEE handle</td>
</tr>
<tr>
<td>MVME2302-900</td>
<td>200 MHz MPC603, 32MB ECC DRAM, Scanbe handle</td>
</tr>
<tr>
<td>MVME2303</td>
<td>333 MHz MPC604, 64MB ECC DRAM, IEEE handle</td>
</tr>
<tr>
<td>MVME2303-900</td>
<td>333 MHz MPC604, 64MB ECC DRAM, Scanbe handle</td>
</tr>
<tr>
<td>MVME2304</td>
<td>200 MHz MPC603, 128MB ECC DRAM, IEEE handle</td>
</tr>
<tr>
<td>MVME2304-900</td>
<td>200 MHz MPC603, 128MB ECC DRAM, Scanbe handle</td>
</tr>
<tr>
<td>MVME2304-011</td>
<td>333 MHz MPC604, 16MB ECC DRAM, original VME Scanbe front panel and handles</td>
</tr>
<tr>
<td>MVME2304-013</td>
<td>333 MHz MPC604, 16MB ECC DRAM, IEEE 1101 compatible front panel with injector/ejector handles</td>
</tr>
<tr>
<td>MVME2304-0121</td>
<td>333 MHz MPC604, 32MB ECC DRAM, original VME Scanbe front panel and handles w/ serial I/O pin-out</td>
</tr>
<tr>
<td>MVME2304-0121SC</td>
<td>333 MHz MPC604, 32MB ECC DRAM, original VME Scanbe front panel and handles w/ serial I/O pin-out</td>
</tr>
<tr>
<td>MVME2304-0123</td>
<td>333 MHz MPC604, 32MB ECC DRAM, IEEE 1101 compatible front panel with injector/ejector handles</td>
</tr>
<tr>
<td>MVME2304-0131</td>
<td>333 MHz MPC604, 64MB ECC DRAM, original VME Scanbe front panel and handles</td>
</tr>
<tr>
<td>MVME2304-0131SC</td>
<td>333 MHz MPC604, 64MB ECC DRAM, original VME Scanbe front panel and handles w/ serial I/O pin-out</td>
</tr>
</tbody>
</table>

Related Products

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVCMSPAN-002</td>
<td>Primary PCI expansion, mates directly to the MVME2300 providing slots for either two single-wide or one double-wide IEEE P1386.1 compliant PMC cards; optional PVCMSPAN-010</td>
</tr>
<tr>
<td>PVCMSPAN-002</td>
<td>Secondary PCI expansion, plugs directly into PVCMSPAN-002 providing two additional PMC slots</td>
</tr>
<tr>
<td>PVCMSPAN-010</td>
<td>Secondary PCI expansion, mates directly to the MVME2300 providing slots for either two single-wide or one double-wide IEEE P1386.1 compliant PMC cards; optional PVCMSPAN-010</td>
</tr>
<tr>
<td>MPCxxx</td>
<td>Motorola’s family of PMC modules; ask your sales representative for details</td>
</tr>
</tbody>
</table>

Documentation

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2300A/IH</td>
<td>MVME2300 Installation and Use Manual</td>
</tr>
<tr>
<td>V2300A/PG</td>
<td>MVME2300 Programmer’s Reference Guide</td>
</tr>
<tr>
<td>PVCMSPANA/IH</td>
<td>PMCspan Installation Guide</td>
</tr>
<tr>
<td>PPCBUGA1/UM</td>
<td>PPC1Bug User’s Manual, Part 1 of 2</td>
</tr>
<tr>
<td>PPCBUGA2/UM</td>
<td>PPC1Bug User’s Manual, Part 2 of 2</td>
</tr>
<tr>
<td>PPCDIAA/UM</td>
<td>Firmware Diagnostics Manual</td>
</tr>
</tbody>
</table>